本文摘自
skipfish是google开源出来的一款安全检测工具(google真是好啊,开源了好多东东)。作者是个geek,写起程序来相当精干老道,项目主页上列举其特点之一:
High speed: pure C code, highly optimized HTTP handling, minimal CPU footprint – easily achieving 2000 requests per second with responsive targets.
一个单线程的程序如何能达到这个性能我们就来分析一下源码吧。
先从高处俯瞰一下整个程序:
整个程序分为一下几个模块:
http模块(http_client.c),数据管理模块(database.c),爬虫兼攻击模块(crawler.c,analysis.c)和报表模块(report.c)。
其中http模块主要负责http回话的的处理,包括url解析,请求的发送,响应的解析。这个模块没用三方库来处理,所有功能都自己实现,相当牛,也相当高效。
数据管理模块主要是管理爬虫需要的站点树和检查出的错误,不多说。
爬虫兼攻击模块负责在url里插入攻击向量,以及html解析和攻击结果的检查。
报表模块是最后生成网页报表的模块,就是把数据模块里的数据输出,不解释。
好,我们来仔细分析http模块和攻击模块。
我们仔细想下整个程序的性能问题就可以发现,攻击往往是顺序进行的。而网页的下载却有快有慢(更内容多少,即时网速都有关)。所以,如果将http的处理逻辑串到攻击逻辑里面必然会造成一会儿网卡忙cpu闲,一会儿cpu闲而网卡忙。这个问题在我前面一篇文章讨论过。解决方法毫无疑问,异步化,下面我们就来看看这两个逻辑是如何异步交互的。
从攻击的角度来看:一个url需要往往都要经过至少以下一些检查步骤:
1.url的类型检查
2.xss测试
3.sql注入测试
从http的角度来看,一个url意味着建立连接,发送请求,接收响应。
从http入手,如何将网卡的性能发挥到100%,并发!skipfish的并发采用了最简单的poll,你可能疑问为什么不用epoll,答案很简单,并发量不多(skipfish默认并发是40个连接),因为http的请求主要是下载,所以一个连接需要下载很多东西,几十个连接流量已经不小了。这不是关键,不多说了。整个skipfish的主循环也在http模块中:u32 next_from_queue(void)。在main函数中有如下代码:
while ((next_from_queue() && !stop_soon) || (!show_once++)) {
…
}
很显然,这个函数就是这个程序的引擎。函数的意思也很明了:http请求队列里是否还有请求。这里引出了很重要的东西:请求队列。代码如下:
/* Request queue descriptor: */
struct queue_entry {
struct http_request* req; /* Request descriptor */
struct http_response* res; /* Response descriptor */
struct conn_entry* c; /* Connection currently used */
struct queue_entry* prev; /* Previous queue entry */
struct queue_entry* next; /* Next queue entry */
u8 retrying; /* Request being retried? */
};
static struct queue_entry* queue;
代码很简单,一个双向链表。里面存放着请求响应对,和关联的网络连接。整个http模块所干的事情,基本也就是next_from_queue函数干的事情,说得简单一点,就是从网卡上取数据往请求队列里面的响应体里面填。填完之后呢?看代码,在next_from_queue函数里:
if (!p)
p = __DFL_ck_alloc(sizeof(struct pollfd) * max_connections);
while (c) {
p[i].fd = c->fd;
p[i].events = POLLIN | POLLERR | POLLHUP;
if (c->write_len - c->write_off || c->SSL_rd_w_wr)
p[i].events |= POLLOUT;
p[i].revents = 0;
c = c->next;
i++;
}
poll(p, conn_cur, 100);
这里填充poll相关的结构体并调用poll,这是整个程序除了gethostbyname以外唯一会阻塞的地方(没流量啥都干不了当然阻塞啦)。下面开始处理所有连接上的数据,代码被我删掉很多,仅留下了关键点。
c = conn;
for (i=0;i<conn_cur;i++) {
if (p[i].revents & (POLLERR|POLLHUP)) {
if (c->q) {
if (c->write_len - c->write_off || !c->read_len) {
c->q->res->state = STATE_CONNERR;
keep = c->q->req->callback(c->q->req, c->q->res);
req_errors_net++;
req_errors_cur++;
} else {
if (parse_response(c->q->req, c->q->res, c->read_buf,
c->read_len, 0) != 2) {
c->q->res->state = STATE_OK;
keep = c->q->req->callback(c->q->req, c->q->res);
if (req_errors_cur <= max_fail)
req_errors_cur = 0;
} else {
c->q->res->state = STATE_CONNERR;
keep = c->q->req->callback(c->q->req, c->q->res);
req_errors_net++;
req_errors_cur++;
}
}
}
destroy_unlink_conn(c, keep);
} else
以上就是当连接错误或者连接关闭的时候的处理,我们看到,这里主要做的事情就是调用parse_response来解析已获得的数据,如果解析没问题,说明网页已经传好了,就调用回调函数req->callback(c->q->req, c->q->res);,我们会经常看到这样的调用,而callback是http_request结构体里面的一个函数指针,它的值在请求发出之前就已经设置好了。我们后面再看。
if (((p[i].revents & POLLIN) && !c->SSL_wr_w_rd) ||
((p[i].revents & POLLOUT) && c->SSL_rd_w_wr)) {
if (c->q) {
if (c->proto == PROTO_HTTPS) {
read_res = SSL_read(c->srv_ssl, c->read_buf + c->read_len,
READ_CHUNK);
} else {
read_res = read(c->fd, c->read_buf + c->read_len, READ_CHUNK);
if (read_res <= 0) goto network_error;
}
c->read_buf[c->read_len] = 0; /* NUL-terminate for sanity. */
p_ret = parse_response(c->q->req, c->q->res, c->read_buf, c->read_len,
(c->read_len > (size_limit + READ_CHUNK)) ? 0 : 1);
if (!p_ret || p_ret == 3) {
c->q->res->state = STATE_OK;
keep = c->q->req->callback(c->q->req, c->q->res);
} else if (p_ret == 2) {
c->q->res->state = STATE_RESPERR;
destroy_unlink_conn(c, c->q->req->callback(c->q->req, c->q->res));
req_errors_http++;
req_errors_cur++;
} else {
c->last_rw = cur_time;
c->q->res->state = STATE_RECEIVE;
}
} else destroy_unlink_conn(c, 0); /* Unsolicited response! */
} else
以上是处理输入读入。也就是读http响应了。读完之后我们会发现,到处调用callback。
if (((p[i].revents & POLLOUT) && !c->SSL_rd_w_wr) ||
((p[i].revents & POLLIN) && c->SSL_wr_w_rd)) {
if (c->proto == PROTO_HTTPS) {
write_res = SSL_write(c->srv_ssl, c->write_buf + c->write_off,
c->write_len - c->write_off);
} else {
write_res = write(c->fd, c->write_buf + c->write_off,
c->write_len - c->write_off);
}
}
} else
if (!p[i].revents) {
u8 keep = 0;
if ((c->q && (cur_time - c->last_rw > rw_tmout ||
cur_time - c->req_start > resp_tmout)) ||
(!c->q && (cur_time - c->last_rw > idle_tmout)) ||
(!c->q && tear_down_idle)) {
if (c->q) {
c->q->res->state = STATE_CONNERR;
keep = c->q->req->callback(c->q->req, c->q->res);
req_errors_net++;
req_errors_cur++;
conn_busy_tmout++;
} else {
conn_idle_tmout++;
tear_down_idle = 0;
}
destroy_unlink_conn(c, keep);
}
}
c = next;
}
}
这部分就是发数据(http请求),和空闲连接的超时处理。很简单?是的,很简单。http模块够简单够高效。而这里的关键在callback上,callback其实就是http模块通知攻击模块的钩子。攻击模块的运转就是靠着一次次的callback来进行的。下面我们看看crawler.c里面,我们发现里面全都是形如inject_check*_callback的函数,这里选了几个,删减一下:
/* Starts injection attacks proper. */
static void inject_init2(struct pivot_desc* pv) {
pv->misc_cnt = BH_CHECKS;
for (i=0;i<BH_CHECKS;i++) {
n = req_copy(pv->req, pv, 1);
n->callback = inject_check0_callback;
n->user_val = i;
async_request(n);
}
}
static u8 inject_check0_callback(struct http_request* req,
struct http_response* res) {
if (FETCH_FAIL(res)) {
handle_error(req, res, (u8*)"during page variability checks", 0);
} else {
if (!same_page(&RPRES(req)->sig, &res->sig)) {
req->pivot->res_varies = 1;
problem(PROB_VARIES, req, res, 0, req->pivot, 0);
}
}
if ((--req->pivot->misc_cnt)) return 0;
/* If response fluctuates, do not perform any injection checks at all. */
if (req->pivot->res_varies) {
end_injection_checks(req->pivot);
return 0;
}
req->pivot->misc_cnt = 0;
…
n = req_copy(req->pivot->req, req->pivot, 1);
if (orig_state == PSTATE_CHILD_INJECT) {
replace_slash(n, (u8*)"\\.sf\\");
} else {
ck_free(TPAR(n));
TPAR(n) = ck_strdup(tmp + 2);
ck_free(tmp);
}
n->callback = inject_check1_callback;
n->user_val = 3;
async_request(n);
return 0;
}
/* CALLBACK FOR CHECK 1: Sees if we managed to list a directory, or find
a traversal vector. Called four times, parallelized. */
static u8 inject_check1_callback(struct http_request* req,
struct http_response* res) {
struct http_request* n;
u32 orig_state = req->pivot->state;
DEBUG_CALLBACK(req, res);
schedule_next:
/* CHECK 2: Backend XML injection - 2 requests. */
n = req_copy(RPREQ(req), req->pivot, 1);
SET_VECTOR(orig_state, n, "sfish>'>\"></sfish><sfish>");
n->callback = inject_check2_callback;
n->user_val = 1;
async_request(n);
return 0;
}
/* CALLBACK FOR CHECK 2: Examines the response for XML injection. Called twice,
parallelized. */
static u8 inject_check2_callback(struct http_request* req,
struct http_response* res) {
struct http_request* n;
u32 orig_state = req->pivot->state;
DEBUG_CALLBACK(req, res);
schedule_next:
destroy_misc_data(req->pivot, req);
/* CHECK 3: Shell command injection - 9 requests. */
n = req_copy(RPREQ(req), req->pivot, 1);
APPEND_VECTOR(orig_state, n, "'`uname`'");
n->callback = inject_check3_callback;
n->user_val = 8;
async_request(n);
return 0;
}
/* CALLBACK FOR CHECK 3: Looks for shell injection patterns. Called several
times, parallelized. */
static u8 inject_check3_callback(struct http_request* req,
struct http_response* res) {
struct http_request* n;
u32 orig_state = req->pivot->state;
DEBUG_CALLBACK(req, res);
if (same_page(&MRES(0)->sig, &MRES(1)->sig) &&
!same_page(&MRES(0)->sig, &MRES(2)->sig)) {
problem(PROB_SH_INJECT, MREQ(0), MRES(0),
(u8*)"responses to `true` and `false` different than to `uname`",
req->pivot, 0);
RESP_CHECKS(MREQ(2), MRES(2));
}
if (same_page(&MRES(3)->sig, &MRES(4)->sig) &&
!same_page(&MRES(3)->sig, &MRES(5)->sig)) {
problem(PROB_SH_INJECT, MREQ(3), MRES(3),
(u8*)"responses to `true` and `false` different than to `uname`",
req->pivot, 0); www.2cto.com
RESP_CHECKS(MREQ(5), MRES(5));
}
if (same_page(&MRES(6)->sig, &MRES(7)->sig) &&
!same_page(&MRES(6)->sig, &MRES(8)->sig)) {
problem(PROB_SH_INJECT, MREQ(6), MRES(6),
(u8*)"responses to `true` and `false` different than to `uname`",
req->pivot, 0);
RESP_CHECKS(MREQ(8), MRES(8));
}
schedule_next:
n = req_copy(RPREQ(req), req->pivot, 1);
SET_VECTOR(orig_state, n, new_xss_tag((u8*)".htaccess.aspx"));
register_xss_tag(n);
n->callback = inject_check4_callback;
n->user_val = 1;
async_request(n);
return 0;
}
我们可以发现,每个callback的结构都差不多,先做些检查,这里就是对响应进行检查发现的地方了。然后schedule_next,在schedule_next后面将请求重新换个攻击向量,设置好请求的callback,又通过async_request(n);发出去了。async_request(n)的实现也是相当简单: void async_request(struct http_request* req) {
struct queue_entry *qe;
struct http_response *res;
if (req->proto == PROTO_NONE || !req->callback)
FATAL("uninitialized http_request");
res = ck_alloc(sizeof(struct http_response));
req->addr = maybe_lookup_host(req->host);
/* Don't try to issue extra requests if max_fail
consecutive failures exceeded; but still try to
wrap up the (partial) scan. */
if (req_errors_cur > max_fail) {
DEBUG("!!! Too many subsequent request failures!\n");
res->state = STATE_SUPPRESS;
if (!req->callback(req, res)) {
destroy_request(req);
destroy_response(res);
}
req_dropped++;
return;
}
/* DNS errors mean instant fail. */
if (!req->addr) {
DEBUG("!!! DNS error!\n");
res->state = STATE_DNSERR;
if (!req->callback(req, res)) {
destroy_request(req);
destroy_response(res);
}
req_errors_net++;
conn_count++;
conn_failed++;
return;
}
/* Enforce user limits. */
if (req_count > max_requests) {
DEBUG("!!! Total request limit exceeded!\n");
res->state = STATE_SUPPRESS;
if (!req->callback(req, res)) {
destroy_request(req);
destroy_response(res);
}
req_dropped++;
return;
}
/* OK, looks like we're good to go. Insert the request
into the the queue. */
qe = queue;
queue = ck_alloc(sizeof(struct queue_entry));
queue->req = req;
queue->res = res;
queue->next = qe;
if (queue->next) queue->next->prev = queue;
queue_cur++;
req_count++;
}
先分配响应体,然后做些解析域名啊什么的,最后把请求体塞进请求队列,完事!注意这里并不做网络IO,也不会立刻返回响应,也不会阻塞。
由此可以看出,http模块对攻击和分析模块唯一的交互便是调用回调,而攻击分析模块更http模块唯一的交互便是往队列里塞请求。主循环负责连接着两个东西,其实也就把cpu和网卡通过异步的方式连接起来了。
仔细想想可以发现,程序的主循环是在做网络数据IO。以IO来驱动其他模块联动。为什么?因为IO最慢,所以要将它的能力发挥到极限。所以就不能让IO等。所以,主循环在做IO